A Freiman-type theorem for locally compact abelian groups

نویسنده

  • Tom SANDERS
چکیده

— Suppose that G is a locally compact abelian group with a Haar measure μ. The δ-ball Bδ of a continuous translation invariant pseudo-metric is called d-dimensional if μ(B2δ′ ) 6 2μ(Bδ′ ) for all δ′ ⊂ (0, δ]. We show that if A is a compact symmetric neighborhood of the identity with μ(nA) 6 ndμ(A) for all n > d log d, then A is contained in an O(d log d)-dimensional ball, B, of positive radius in some continuous translation invariant pseudo-metric and μ(B) 6 exp(O(d log d))μ(A). Résumé. — Soit G un groupe abélien localement compact muni d’une mesure de Haar μ. La δ-boule Bδ pour une pseudo-métrique continue et invariante par translation sera dite de dimension d si μ(B2δ′ ) 6 2μ(Bδ′ ) pour tout δ′ ⊂ (0, δ]. Nous montrons que si A est un voisinage compact symétrique de l’identité tel que μ(nA) 6 ndμ(A) pour tout n > d log d, alors A est contenu dans une boule B de dimension O(d log d) et de rayon strictement positif pour une pseudo-métrique continue et invariante par translation ; de plus μ(B) 6 exp(O(d log d))μ(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudoframe multiresolution structure on abelian locally compact groups

‎Let $G$ be a locally compact abelian group‎. ‎The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$‎. ‎Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level‎. ‎Also‎, ‎the construction of affine frames for $L^2(G)$ bas...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

Bracket Products on Locally Compact Abelian Groups

We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).

متن کامل

On component extensions locally compact abelian groups

Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009